
Mid-Level Vision at Habitat Challenge

Alexander Sax*1 Jeffrey O. Zhang*1 Bradley Emi2 Amir Zamir1,2

Silvio Savarese2 Leonidas Guibas2 Jitendra Malik1

1 University of California, Berkeley 2 Stanford University

http://perceptual.actor/

Abstract

Does knowing that the world is 3D help in delivering a
package? More generally, how much does having visual
priors about the world assist in learning to perform down-
stream motor tasks? We study this question by integrating
a generic perceptual skill set (e.g. a distance estimator, an
edge detector, etc.) into a reinforcement learning frame-
work—see Fig. 1. This skill set (hereafter mid-level vision)
provides the policy with a more processed state of the world
compared to raw images.

We found that using mid-level vision confers significant
advantages over training end-to-end without visual priors
(i.e. tabula rasa) in navigation-oriented tasks. The result-
ing policies generalize in situations where the tabula rasa
approach fails, and the policies train with far fewer sam-
ples. However, realizing these gains requires careful se-
lection of the mid-level visual skills. We refined this in-
sight into an efficient max-coverage feature set that can
be adopted in lieu of raw images. We submitted an pol-
icy trained with only mid-level vision to the 2019 CVPR
Habitat Challenge, where it won the RGB track. The full
paper, interactive visualizations, and an installable pack-
age implementing visual priors, are available at http:
//perceptual.actor/.

1. Introduction
The renaissance of deep reinforcement learning (RL)

started with the Atari DQN paper in which Mnih et al. [5]
demonstrated an RL agent that learned to play video games
directly from pixels. While the direct-from-pixels approach
can learn arbitrary policies in an elegant, end-to-end fash-
ion, there are two phenomena endemic to the paradigm: I.
learning requires massive amounts of data (large sample
complexity), and II. the resulting policies exhibit difficul-
ties reproducing across environments with even modest vi-
sual differences (difficulty with generalization).

These phenomena are characteristic of a type of learn-
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Figure 1. Mid-level vision in an end-to-end framework for learning
active robotic tasks. Not incorporating such mid-level vision (i.e. by-
passing the red box) is equivalent to learning directly from raw pixels. We
report significant advantages in sample efficiency and generalization when
using mid-level vision.

ing that is too generic [1]—in that it does not make use of
valid assumptions that could boost generalization. Exam-
ples of such assumptions include that the world is spatially
3D or that certain groupings (“objects”) behave together as
a single entity. These are facts about the world and are gen-
erally true. Incorporating them as priors could provide an
advantage over the assumption-free style of learning.

Including proper visual priors alleviates these two phe-
nomena, improving both generalization and sample effi-
ciency. We chose to implement visual priors by updating
each policy’s initial state from raw pixels to some mid-level
features, using a neural network trained for some (isolated)
computer vision task.

In the full paper, we showed that the best choice of prior
depends on the downstream task, necessitating that we use
a defensive set of features when we do not know what the
downstream task will be a priori. Instead of hand-picking
the features, we found this set computationally, present-
ing a max-coverage feature set. Experiments in Habi-
tat [4] confirm that this performs roughly as well as the
best-performing single feature.

Our full paper [6] contains extensive supporting evi-
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Figure 2. Mid-level vision setup. The learned features from fixed en-
coder networks are used as the state for training policies in RL. The setup
here shows an agent using surface normal features. See readouts from each
network as well as how the resulting polices perform, at our website

dence in the Gibson [11] and VizDoom [3] environments.
Without any additional environment-specific tuning, we
replicated those results in the Habitat [4] environment. This
is a technical report that details the Habitat Challenge sub-
mission. For the full study, with both qualitative and quan-
titative interactive visualizations, an overview video, code,
pretrained models, dockers containing our experiments, and
an installable package implementing mid-level visual pri-
ors, please see our website.

2. Methodology and Experimental Setup
The Habitat Challenge consists of a local planning task

where the agent must navigate to some target that is speci-
fied by a coordinate relative to the agent. The agent receives
an RGB visual observation and a map of previously visited
locations. This section details the high-level components of
our submitted agent.
Mid-level visual priors: We implemented mid-level vision
by taking the intermediate activations from a set of encoder-
decoder neural networks that were each trained, offline, for
a specific mid-level visual task–see Fig. 2. We froze each
encoder’s weights and used the encoder (φ) to transform
each observed image ot into a summary statistic φ(ot) that
we fed to the agent. During training, only the agent policy
was updated.

We used the networks of [10] trained on a dataset of 4
million static images in of indoor scenes [10]. Each net-
work encoder consists of a ResNet-50 [2] without a global
average-pooling layer. See our website for a full list of fea-
tures and sample videos of networks evaluated in our envi-
ronments.
Non-visual components: This details the high-level non-
visual components of our agent. For an exhaustive descrip-
tion of the mid-level setup as well as hyperparameter set-
tings and the code, please see our website.

Evaluation metric: Performance is measured using the Success
Weighted by Path Length (SPL) [4] metric where 0 is the worst
and 1 is the best possible.
RL algorithm: In all experiments we use the common Proximal
Policy Optimization (PPO) [8] algorithm with Generalized Ad-
vantage Estimation [7]. We decorrelate our batches using experi-
ence replay and off-policy variant of PPO, similar to Actor-Critic
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Figure 3. Local planning in Habitat. Agents with mid-level vision sig-
nificantly outperform scratch. At the challenge deadline our agent had not
yet finished training, and after continued training our agent achieved 0.06
higher SPL. Right: The location history provided by the map improved
performance, but this gain was dwarfed by the improvement from using
mid-level vision.

with Experience Replay (ACER) [9]. See [6] for the full formu-
lation.
No tuning: We do no hyperparameter tuning, instead using the
parameters from the local planning task in Gibson from [6],
which were optimized for tabula rasa learning.
Single-GPU: We trained our mid-level feature-based agents us-
ing a single GPU, which we used for both training and environ-
ment rollouts.
Backout and jerk validation: Our original submission used a
takeover policy that assumes control from the trained agent when
the agent gets stuck or tries to move Left/Right multiple times in
a row. This improved performance by 0.03 SPL, but we achieved
larger gains by simply training longer after the challenge.

3. Results
Without any hyperparameter tuning and using only

the features found useful in [6], the feature-based agent
achieved an SPL of 0.821 By comparison, agents trained
tabula rasa achieved an SPL of around 0.46 and these re-
sults are completely consistent with our findings in [6].

In addition to achieving higher generalization perfor-
mance, feature-based agents were much more sample ef-
ficient than learning tabula rasa (Fig. 4). Feature-based
agents reached the maximum reward achieved by tabula
rasa with only 1/10th of the training data.

We note in Fig. 3 that the map improved final perfor-
mance, but this change is in addition to the benefits of mid-
level vision and almost all of the SPL improvement comes
from the visual priors. In fact, the memoryless feature-
based agent significantly outperforms the scratch agent,
even when that agent has access to the map.

In terms of which features fared well in the challenge:
they were not necessarily the ones currently considered es-
sential (Fig. 4). Although depth performed well, others fea-
tures such as curvature performed comparably or better.

Finally, we used the Max-Coverage Feature Set from
the full paper, finding that it performed about the same
as our best agent (curvature). These results are shown in
Fig. 3. This, again, is consistent with our findings in [6].

1This is 0.06 SPL higher than our submission, which managed to win
the RGB track of the challenge despite not being fully trained.
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Figure 4. Comparison of various types of mid-level vision in Habitat.
Left: Agents using depth features outperform scratch, but other representa-
tion perform comparably or better. However, not all are useful and autoen-
coder features perform no better than scratch. Right: Our task-agnostic
Max-Coverage Feature Set performs roughly as well as the best features.
However, task-specific feature sets might have even better performance
(geometric set).

4. Discussion
Including mid-level visual priors closed two-thirds of the

gap between direct-from-pixels RL and the best-possible
agent. This would suggest that one of the primary diffi-
culties with RL-from-pixels is using the pixels themselves.
Upgrading the visual input from pixels to something more
processed, such as encodings, has clear benefits. However,
the exactly what those encodings should be and how to
choose them for each task is not yet clear. The generic Max-
Coverage Min-Distance set of mid-level features performed
well in the Habitat Challenge–about as well as the the best
single feature.

More in-depth analysis and a discussion of limitations is
given in the full study: http://perceptual.actor/.
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